

Welcome to pytest-splinter’s documentation!

Contents

	Welcome to pytest-splinter’s documentation!

	Splinter plugin for the pytest runner

	Install pytest-splinter

	Features

	Fixtures

	Command-line options

	Browser fixture

	Several browsers for your test

	Automatic screenshots on test failure

	Python3 support

	Example

	Contact

	License

	Authors

	Changelog

	1.9.0

	1.8.6

	1.8.5

	1.8.3

	1.8.2

	1.8.1

	1.8.0

	1.7.8

	1.7.7

	1.7.6

	1.7.5

	1.7.4

	1.7.3

	1.7.2

	1.7.1

	1.7.0

	1.6.6

	1.6.2

	1.6.0

	1.5.3

	1.5.2

	1.5.1

	1.5.0

	1.4.6

	1.4.0

	1.3.8

	1.3.7

	1.3.6

	1.3.5

	1.3.4

	1.3.3

	1.3.1

	1.2.10

	1.2.9

	1.2.7

	1.2.4

	1.2.3

	1.2.0

	1.1.1

	1.1.0

	1.0.4

	1.0.3

	1.0.2

	1.0.1

	1.0.0

Splinter plugin for the pytest runner

[image: Join the chat at https://gitter.im/pytest-dev/pytest-splinter]
 [https://gitter.im/pytest-dev/pytest-splinter?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge][image: _images/pytest-splinter1.svg]
 [https://pypi.python.org/pypi/pytest-splinter][image: _images/pytest-splinter2.svg]
 [https://pypi.python.org/pypi/pytest-splinter][image: _images/master.svg]
 [https://coveralls.io/r/pytest-dev/pytest-splinter][image: _images/pytest-splinter3.svg]
 [https://travis-ci.org/pytest-dev/pytest-splinter][image: Documentation Status]
 [https://readthedocs.org/projects/pytest-splinter/?badge=latest]
Install pytest-splinter

pip install pytest-splinter

Features

The plugin provides a set of fixtures to use splinter [https://splinter.readthedocs.io]
for browser testing with pytest [http://pytest.org]

Fixtures

	
	browser
	Get the splinter’s Browser. Fixture is underneath session scoped, so browser process is started
once per test session, but the state of the browser will be clean (current page is blank, cookies clean).

	
	session_browser
	The same as browser except the lifetime. This fixture is session-scoped so will only be finalized at the
end of the whole test session. Useful if you want to speedup your test suite paying with reduced test isolation.

	
	browser_instance_getter
	Function to create an instance of the browser. This fixture is required only if you need to have
multiple instances of the Browser in a single test at the same time. Example of usage:

@pytest.fixture
def admin_browser(request, browser_instance_getter):
 """Admin browser fixture."""
 # browser_instance_getter function receives parent fixture -- our admin_browser
 return browser_instance_getter(request, admin_browser)

def test_2_browsers(browser, admin_browser):
 """Test using 2 browsers at the same time."""
 browser.visit('http://google.com')
 admin_browser.visit('http://admin.example.com')

	
	splinter_selenium_implicit_wait
	Implicit wait timeout to be passed to Selenium webdriver.
Fixture gets the value from the command-line option splinter-implicit-wait (see below)

	
	splinter_wait_time
	Explicit wait timeout (for waiting for expicit condition via wait_for_condition).
Fixture gets the value from the command-line option splinter-wait-time (see below)

	
	splinter_selenium_speed
	Speed for Selenium, if not 0 then it will sleep between each selenium command.
Useful for debugging/demonstration.
Fixture gets the value from the command-line option splinter-speed (see below)

	
	splinter_selenium_socket_timeout
	Socket timeout for communication between the webdriver and the browser.
Fixture gets the value from the command-line option splinter-socket-timeout (see below)

	
	splinter_webdriver
	Splinter’s webdriver name to use. Fixture gets the value from the command-line option
splinter-webdriver (see below). To make pytest-splinter always use certain webdriver, override a fixture
in your conftest.py file:

import pytest

@pytest.fixture(scope='session')
def splinter_webdriver():
 """Override splinter webdriver name."""
 return 'phantomjs'

	
	splinter_remote_url
	Splinter’s webdriver remote url to use (optional). Fixture gets the value from the command-line option
splinter-remote-url (see below). Will be used only if selected webdriver name is ‘remote’.

	
	splinter_session_scoped_browser
	pytest-splinter should use single browser instance per test session.
Fixture gets the value from the command-line option splinter-session-scoped-browser (see below)

	
	splinter_file_download_dir
	Directory, to which browser will automatically download the files it
will experience during browsing. For example when you click on some download link.
By default it’s a temporary directory. Automatic downloading of files is only supported for firefox driver
at the moment.

	
	splinter_download_file_types
	Comma-separated list of content types to automatically download.
By default it’s the all known system mime types (via mimetypes standard library).

	
	splinter_browser_load_condition
	Browser load condition, python function which should return True.
If function returns False, it will be run several times, until timeout below reached.

	
	splinter_browser_load_timeout
	Browser load condition timeout in seconds, after this timeout the exception
WaitUntilTimeout will be raised.

	
	splinter_wait_time
	Browser explicit wait timeout in seconds, after this timeout the exception
WaitUntilTimeout will be raised.

	
	splinter_firefox_profile_preferences
	Firefox profile preferences, a dictionary which is passed to selenium
webdriver’s profile_preferences

	
	splinter_firefox_profile_directory
	Firefox profile directory to use as template for firefox profile created by selenium.
By default, it’s an empty directly inside pytest_splinter/profiles/firefox

	
	splinter_driver_kwargs
	Webdriver keyword arguments, a dictionary which is passed to selenium
webdriver’s constructor (after applying firefox preferences)

	
	splinter_window_size
	Size of the browser window on browser initialization. Tuple in form (<width>, <height>). Default is (1366, 768)

	
	splinter_screenshot_dir
	pytest-splinter browser screenshot directory.
This fixture gets the value from the command-line option
splinter-screenshot-dir (see below).

	
	splinter_make_screenshot_on_failure
	Should pytest-splinter take browser screenshots on test failure?
This fixture gets the value from the command-line option
splinter-make-screenshot-on-failure (see below).

	
	splinter_screenshot_encoding
	Encoding of the html screenshot on test failure. UTF-8 by default.

	
	splinter_screenshot_getter_html
	Function to get browser html screenshot. By default, it saves browser.html with given path and
splinter_screenshot_encoding encoding.

	
	splinter_screenshot_getter_png
	Function to get browser image (png) screenshot. By default, it calls browser.save_sceenshot
with given path.

	
	splinter_driver_executable
	Filesystem path of the webdriver executable.
This fixture gets the value from the command-line option
splinter-webdriver-executable (see below).

	
	splinter_browser_class
	Class to use for browser instance.
Defaults to pytest_splinter.plugin.Browser.

	
	splinter_clean_cookies_urls
	List of additional urls to clean cookies on. By default, during the preparation of the browser for the test,
pytest-splinter only cleans cookies for the last visited url from previous test, as it’s not possible to clean
all cookies from all domains at once via webdriver protocol, by design. This limitation can be worked around if
you know the list of urls, the domains for which you need to clean cookies (for example https://facebook.com).
If so, you can override this fixture and put those urls there, and pytest-splinter will visit each of them and will
clean the cookies for each domain.

	
	splinter_headless
	Run Chrome in headless mode. As the writing of this (2017-07), available only in unreleased Splinter master version.
Defaults to false.

Command-line options

	
	–splinter-implicit-wait
	Selenium webdriver implicit wait. Seconds (default: 5).

	
	–splinter-speed
	selenium webdriver speed (from command to command). Seconds (default: 0).

	
	–splinter-socket-timeout
	Selenium webdriver socket timeout for for communication between the webdriver and the browser.
Seconds (default: 120).

	
	–splinter-webdriver
	Webdriver name to use. (default: firefox). Options:

	firefox

	remote

	chrome

	phantomjs

For more details refer to the documentation for splinter and selenium.

	
	–splinter-remote-url
	Webdriver remote url to use. (default: None). Will be used only if selected webdriver name is ‘remote’.

For more details refer to the documentation for splinter and selenium.

	
	–splinter-session-scoped-browser
	pytest-splinter should use a single browser instance per test session.
Choices are ‘true’ or ‘false’ (default: ‘true’).

	
	–splinter-make-screenshot-on-failure
	pytest-splinter should take browser screenshots on test failure.
Choices are ‘true’ or ‘false’ (default: ‘true’).

	
	–splinter-screenshot-dir
	pytest-splinter browser screenshot directory. Defaults to the current
directory.

	
	–splinter-webdriver-executable
	Filesystem path of the webdriver executable. Used by phantomjs and chrome drivers.
Defaults to the None in which case the shell PATH variable setting determines the location of the executable.

Browser fixture

As mentioned above, browser is a fixture made by creating splinter’s Browser object, but with some overrides.

	
	visit
	Added possibility to wait for condition on each browser visit by having a fixture.

	
	wait_for_condition
	Method copying selenium’s wait_for_condition, with difference that condition is in python,
so there you can do whatever you want, and not only execute javascript via browser.evaluate_script.

Several browsers for your test

You can have several browsers in one test.

import pytest

@pytest.fixture
def admin_browser(browser_instance_getter):
 return browser_instance_getter(admin_browser)

def test_with_several_browsers(browser, admin_browser):
 browser.visit('http://example.com')
 admin_browser.visit('about:blank')
 assert browser.url == 'http://example.com'

Automatic screenshots on test failure

When your functional test fails, it’s important to know the reason.
This becomes hard when tests are being run on the continuos integration server,
where you cannot debug (using –pdb).
To simplify things, a special behaviour of the browser fixture is available,
which takes a screenshot on test failure and puts it in a folder with the a
naming convention compatible to the
jenkins plugin [https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Attachments+Plugin].
The html content of the browser page is also stored, this can be useful for debugging the html source.

Creating screenshots is fully compatible with pytest-xdist plugin [https://pypi.python.org/pypi/pytest-xdist] and will transfer the screenshots
from the slave nodes through the communication channel automatically.

If a test (using the browser fixture) fails, you should get a screenshot files
in the following path:

<splinter-screenshot-dir>/my.dotted.name.test.package/test_name-browser.png
<splinter-screenshot-dir>/my.dotted.name.test.package/test_name-browser.html

The splinter-screenshot-dir for storing the screenshot is generated by a
fixture and can be provided through a command line argument, as described above
at the configuration options section.

Taking screenshots on test failure is enabled by default. It can be controlled
through the splinter_make_screenshot_on_failure fixture, where return False
skips it. You can also disable it via a command line argument:

pytest tests/functional --splinter-make-screenshot-on-failure=false

In case taking a screenshot fails, a pytest warning will be issued, which
can be viewed using the -rw argument for pytest.

Python3 support

Python3 is supported, check if you have recent version of splinter as it was added recently.

Example

test_your_test.py:

def test_some_browser_stuff(browser):
 """Test using real browser."""
 url = "http://www.google.com"
 browser.visit(url)
 browser.fill('q', 'splinter - python acceptance testing for web applications')
 # Find and click the 'search' button
 button = browser.find_by_name('btnK')
 # Interact with elements
 button.click()
 assert browser.is_text_present('splinter.cobrateam.info'), 'splinter.cobrateam.info wasn't found... We need to'
 ' improve our SEO techniques'

Contact

If you have questions, bug reports, suggestions, etc. please create an issue on
the GitHub project page [http://github.com/paylogic/pytest-splinter].

License

This software is licensed under the MIT license [http://en.wikipedia.org/wiki/MIT_License]

See License file [https://github.com/paylogic/pytest-splinter/blob/master/LICENSE.txt]

© 2014 Anatoly Bubenkov, Paylogic International and others.

Authors

	Anatoly Bubenkov
	original idea and implementation, new features and improvements

These people have contributed to pytest-splinter, in alphabetical order:

	Alessio Bogon

	Andreas Pelme

	Andrey Makhnach

	Aymeric Augustin [https://myks.org/]

	Daniel Hahler

	Hugo

	Ionel Cristian Mărieș

	Laurence Rowe

	Marco Buccini

	Mikko Ohtamaa

	Oleg Pidsadnyi

	Peter Lauri

	Suresh V

	Tomáš Ehrlich

Changelog

1.9.0

	Use getfixturevalue instead of getfuncargvalue #97 [https://github.com/pytest-dev/pytest-splinter/issues/97] (pelme)

	Added Chrome headless support (miohtama)

1.8.6

	Fix screenshots not being taken when used with xdist (youtux)

1.8.5

	Fixed issue with xdist #94 [https://github.com/pytest-dev/pytest-splinter/issues/94] (bubenkoff)

1.8.3

	Profile does not work with geckodriver+remote webdriver
#90 [https://github.com/pytest-dev/pytest-splinter/issues/90]) (pelme)

1.8.2

	Fixed missing switch_to method (some selenium expected_conditions are broken without
it, see #93 [https://github.com/pytest-dev/pytest-splinter/pull/93])

1.8.1

	Ensure node’s splinter_failure always exists (bubenkoff, pelme)

	Correctly handle skipped tests (bubenkoff, schtibe)

1.8.0

	Limit retry behavior for prepare_browser (bubenkoff)

	Workaround for cleaning cookies (Edge browser) (bubenkoff)

1.7.8

	Make it possible to override the default value for –splinter-wait-time (magnus-staberg)

1.7.7

	Make it possible to override the default –splinter-webdriver (pelme)

	Fix screenshots for function scoped fixtues (pelme)

1.7.6

	Support pytest 3 (bubenkoff)

	Less opionated override of splinter’s visit (bubenkoff)

1.7.5

	escape screenshot paths for path separators (bubenkoff)

1.7.4

	use tmpdir_factory to get session scoped tmpdir (RonnyPfannschmidt, bubenkoff)

1.7.3

	fixed Firefox freezing when opening a missing codec extension (olegpidsadnyi)

1.7.2

	fixed taking a screenshot with pytest>=2.9.0 (olegpidsadnyi)

1.7.1

	pytest warnings fixed (firebirdberlin)

	remove firefox firstrun script (aaugustin, bubenkoff)

1.7.0

	add possibility to clean cookies on given domains during the browser cleanup, document cookies cleanup (bubenkoff)

1.6.6

	screenshot encoding made flexible (bubenkoff)

1.6.2

	pass timeout to restored connection (bubenkoff)

1.6.0

	added html screenshot (bubenkoff, blueyed)

1.5.3

	remote webdriver fixes (bubenkoff)

1.5.2

	respect splinter_make_screenshot_on_failure (bubenkoff)

1.5.1

	use native selenium socket timeout feature (pelme)

1.5.0

	pytest tmpdir_factory support (bubenkoff)

	depend on splinter 0.7.3, remove the previous status_code monkey patch (pelme)

	add option –splinter-wait-time to specify splinter explicit wait timeout (pelme)

1.4.6

	ensure base tempdir exists (bubenkoff)

1.4.0

	introduce splinter_browser_class fixture (bubenkoff, ecesena)

1.3.8

	correctly handle zope.testbrowser splinter driver (bubenkoff)

1.3.7

	pass splinter_selenium_implicit_wait as wait_time to splinter Browser (lrowe)

1.3.6

	properly respect webdriver executable command line option (bubenkoff, bh)

1.3.5

	add option –splinter-webdriver-executable for phantomjs and chrome (sureshvv)

1.3.4

	make browser_instance_getter session scoped, add session_browser fixture (bubenkoff, sureshvv)

1.3.3

	make mouse_over comparible with more use-cases (bubenkoff)

1.3.1

	properly handle driver switch during the test run (bubenkoff)

	respect splinter_session_scoped_browser fixture (bubenkoff)

1.2.10

	handle exceptions during screenshot saving (blueyed, bubenkoff)

	documentation improvements (blueyed)

1.2.9

	status_code is back in a lazy way (bubenkoff)

1.2.7

	Fix automatic download of pdf content type (bubenkoff)

1.2.4

	fix failing the test run if pytest-xdist is not installed, as it’s completely optional dependency (bubenkoff, slafs)

1.2.3

	improve exception handing when preparing the browser instance (bubenkoff)

	require pytest (bubenkoff)

1.2.0

	automatic screenshot capture on test failure (bubenkoff)

	improvements to the browser preparation procedure (bubenkoff)

	boolean config options made more clear (bubenkoff)

1.1.1

	restore browser parameters on each test run instead of once for browser start (bubenkoff)

1.1.0

	added possibility to have multiple browser instances for single test (amakhnach, bubenkoff)

1.0.4

	Fixed browser fixture to support splinter_browser_load_condition and splinter_browser_load_timeout by default. (markon)

1.0.3

	unicode fixes to setup.py (bubenkoff, valberg)

1.0.2

	wait_for_condition now receives pytest_bdd.plugin.Browser object, not selenium webdriver one (bubenkoff)

1.0.1

	Refactoring and cleanup (bubenkoff)

1.0.0

	Initial public release

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to pytest-splinter’s documentation!

_static/plus.png

_static/file.png

_static/minus.png

